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ABSTRACT

The Geometry Measuring Machine (GEMM) of the National Institute of Standards and Technology (NIST) is a profilome-
ter for free-form surfaces. A profile is reconstructed from the local curvature of a test part surface, measured at several
locations along a line. For profile measurements of free-form surfaces, methods based on local part curvature sensing
have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The uncertainty of a
reconstructed profile is critically dependent upon the uncertainty of the curvature measurement and, to a lesser extent, on
curvature sensor positioning accuracy. For an instrument of the GEMM type, we evaluate the measurement uncertainties
for a curvature sensor based on a small aperture interferometer and then estimate the uncertainty that can be achieved
in the reconstructed profile. In addition, profile measurements of a free-form mirror using GEMM are compared with
measurements using a long-trace profiler, a coordinate measuring machine, and subaperture-stitching interferometry.
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1. INTRODUCTION

Full-aperture interferometry has evolved into a general test method in the production of flat and spherical precision surfaces.
Modern interferometers use electronic imaging systems which can provide near instantaneous form error information for
entire surfaces. Typically interferometers can be used to measure a wide range of flat and spherical surfaces. The difficulty
in using interferometry for testing aspheric surfaces is widely acknowledged. Apart from certain quadric surfaces, for
which special test setups can be used, aspheric surfaces and wavefronts must be tested using “null optics”. Null optics are
precision optics that are not only expensive, but also create additional metrology problems. This situation has led to many
attempts to develop alternative metrology methods in order to lower the cost of measuring aspheric surfaces.

One idea that has been pursued repeatedly is to base the measurement of a profile, or a surface, on measurements
of the curvature. From a geometric point of view this approach has considerable appeal. Interferometers, and coordinate
measuring machines, are used to measure a profile, or surface, of a part relative to an absolute external reference. In the case
of interferometers, this is a flat or spherical reference wavefront which is usually created using an appropriate reference
surface. In a coordinate measuring machine the coordinate reference is embodied in the straightness of its guideways, their
alignment, and the accuracy of its scales. A measurement made with these methods provides information on the form of
the part together with information on its orientation, or alignment, with respect to the external reference. In interferometry
of aspheric surfaces, it can be difficult to separate form information from alignment information. In a profilometer based on
curvature sensing, the measurands are intrinsic parameters of a profile, or surface, which completely determine the form1

regardless of the orientation and position relative to an external reference.

We will restrict ourselves to the measurement of one-dimensional surface profiles z(y) in a plane where z is the profile
“height” and y the position. In Cartesian coordinates, the following non-linear differential equation2 relates the profile
z(y) to the curvature k(y) at each point:
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Figure 1. Solid model of NIST’s prototype Geometry Measuring Machine (GEMM) on the left and photograph of the actual instrument
(right).

This is a form of the Frenet equations which describe arbitrary curves in space.1 Eq. 1 may be interpreted in two ways:
either given a profile z(y), the curvature of a profile at any point can be calculated, or, when the curvature k(y)is known, it
can be used to reconstruct the profile z(y) by integration.

The first to apply these geometric concepts to the problem of profiling aspheric surfaces was Glenn.3, 4 His ideas
were later refined when the Physikalisch-Technische Bundesanstalt (PTB), Germany, proposed the Large Area Curvature
Sensor (LACS) instrument for profiling steep aspheric surfaces.5–13 The Geometry Measuring Machine (GEMM) of the
National Institute of Standards and Technology (NIST) is a prototype instrument for profiling precision aspheric surfaces
based on curvature sensing. GEMM is built from commercially available parts and, like LACS, uses a small interferometer
as its curvature sensor. The purpose of GEMM is to evaluate profile and surface metrology based on curvature sensing, to
determine the uncertainty that can be achieved in profile- and surface- measurements, and to find out if curvature sensing
profile- and surface- metrology will be able to compete with established metrology methods such as interferometry.

2. THE GEOMETRY MEASURING MACHINE (GEMM) AT NIST

The mechanical design of the GEMM prototype at NIST is shown in Fig. 1. For clarity, a solid model of GEMM is shown
together with a photograph of the actual instrument. A simple machine frame was created from two aluminum plates which
are connected by three sturdy aluminum pillars. GEMM uses a compact phase-measuring Twyman-Green interferometer
for the measurement of the local curvature at many points along a line on the part surface under test. GEMM needs a
curvature sensor with a very low measurement uncertainty. We chose an interferometer as the curvature sensor in GEMM,
primarily because a suitable compact phase-measuring interferometer was commercially available. Disadvantages of using
a phase-measuring interferometer as the curvature sensor are the limited dynamic range, and the high degree of redundancy
in the acquired data, which requires a whole image to be acquired for a single curvature value.14 In a prototype instrument
these are only minor concerns, but it may be necessary to evaluate alternative means for curvature sensing with improved
efficiency in a production instrument. The test beam of the interferometer is collimated and beam diameters of 2 mm and
10 mm can be selected by changing objective lenses. During a profile measurement the interferometer must be moved
from one grid point to the next and it must be possible to adjust the tilt of the interferometer so that the test beam is
nearly normal to the surface, which requires an accurate motion control system. For surface scans, at least 5 degrees of
freedom are required. In GEMM, a Stewart platform, or Hexapod robot, is used to move the interferometer. The Stewart
platform in GEMM is a stiff, stable motion system with 6 degrees of freedom which has a standard position uncertainty
of 1 µm for the translational degrees of freedom. A computer controls both the phase-measuring interferometer and the
Stewart platform. They are integrated with the MATLAB† environment, which is used as a flexible means to script all
measurement procedures. GEMM is installed in a temperature-controlled laboratory on a vibration-isolated granite table.



Figure 2. Solid model of the Small Aperture Digital Interferometer (SADI) developed at NIST (left) and ray-trace model of the imaging
system (right). SADI is a Fizeau interferometer with collimated test beam of 5 mm diameter. The dimensions of the interferometer are
approximately 10 cm × 10 cm × 4 cm. The ray-trace model shows the beam splitter and the imaging system which consists of a single
lens.

2.1. A Future GEMM Curvature Sensor

In section 3.2, we discuss the need for the GEMM curvature sensor to measure not only the local shape of a surface, but
also the distance of the sensor to the surface. A new curvature sensor for GEMM is now under construction at NIST,
which will be able to make simultaneous form and distance measurements. The new sensor is specifically designed for
GEMM and avoids a number of problems that we encountered with the general purpose interferometer currently used as
the curvature sensor. The new sensor will be a compact Fizeau interferometer, the “Small Aperture Digital Interferometer”
(SADI). A solid model of the interferometer can be seen in Fig. 2. SADI has a collimated test beam of 5 mm diameter.
The dimensions of the interferometer are approximately 10 cm × 10 cm × 4 cm. The optical model of the interferometer is
shown in Fig. 2 on the right. Every interferometer design is a compromise between the need to observe clean interference
fringes, which carry the surface height information, and good imaging of the surface under test, which makes it possible
to relate the height measurement to test part coordinates. An undistorted image often requires a large number of optical
surfaces, creating coherent stray light and “ghost fringes” in the interferometer, which reduces the accuracy of height
measurements. SADI is designed to achieve a low uncertainty for surface height measurements while permitting some
image distortion. The interferometer has a very simple imaging system, consisting of just one lens, to reduce undesirable
coherent reflections as much as possible. Because SADI has fixed object and image distances, any residual distortion by
the imaging system can be calibrated and corrected numerically after image acquisition. The design wavelength for SADI
is 633 nm. The wavelength of the laser can be shifted for phase measuring and to enable measurement of the distance
between the reference surface of SADI and the test part surface.

3. COMPUTER SIMULATION OF GEMM MEASUREMENTS

We have undertaken computer simulations to understand the effect of uncertainties in the GEMM measurement procedure
and the resulting uncertainty in the profile measurements. The test part for the simulations was an aspheric surface which
is described by the following well known equation:

z(y) =
y2

R





1

1 +
√

1 − (K + 1) y2

R2



 . (2)

y is the position coordinate and R is the vertex radius of the surface at y = 0. The conic constant K was set to -1.6,
which makes the surface a hyperboloid. (This value of the conic constant was chosen because we have a hyperbolic mirror
with the same conic constant and a vertex radius of 0.2 m.) In the computer simulation we studied parts with vertex radii,
R, of 0.08 m, 0.8 m, 8 m, and 80 m. These cover a range from a relatively small radius up to the large radii that are



10
-4

10
-3

10
-2

10
-1

Position Uncertainty / mm

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

P
ea

k-
V

al
le

y 
R

ec
on

st
ru

ct
io

n 
U

nc
er

ta
in

ty
 / 

nm

80m

8m

0.8m

0.08m

G
E

M
M

10
-4

10
-3

10
-2

10
-1

Position Uncertainty / mm

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
M

S 
R

ec
on

st
ru

ct
io

n 
U

nc
er

ta
in

ty
 / 

nm

80m

8m

0.8m

0.08m

G
E

M
M

Figure 3. Reconstruction error as function of sensor position uncertainty. The standard position uncertainty of GEMM (2.2 µm) is
indicated with a vertical dashed line. Error bars in this and the following figures indicate a range equal to two standard uncertainties.

found in imaging systems for synchrotron radiation beamlines. A part diameter of 86 mm was assumed for all radii. The
profile measurements were simulated along the radial direction of all four surfaces. There are two sources of measurement
uncertainty inherent in the GEMM method and these are the uncertainty in knowing the position where the part curvature
is measured and the uncertainty in the curvature measurement itself. In the following sections, we discuss the magnitude
of these uncertainties and their effect on profile reconstruction. Some aspects of the GEMM method that affect only high
order terms of the reconstructed profiles are not discussed here. Among these are the influence of size of the test beam
diameter and the spacing between the curvature measurements along a profile.

3.1. Effect of Uncertainty in Sensor Positioning

An error in positioning the curvature sensor along the profile leads to a second-order error in the curvature measurement.
The profile reconstruction uncertainty that is affected by sensor position uncertainty is a consequence of the aspheric
departure of the surface from a sphere. For the profile of a sphere, a position error is without consequence because the
curvature does not depend on the measurement position. Larger departures of the aspheric surface from the best-fit sphere
are expected to lead to larger profile reconstruction uncertainties. The profile reconstruction was simulated for parts with
different vertex radii, R, in Eq. 2. Fig. 3 shows the peak-to-valley reconstruction error (left) and the rms reconstruction
error (right) for the different radii. In calculating the graphs of Fig. 3 we assume that the position errors of our Stewart
platform are normally distributed about the nominal positions. The abscissæ of the graphs are the standard deviations of
the distribution of position errors. At every point shown in Fig. 3, a GEMM measurement, subject to the position error of
the stage, was simulated 20 times. The procedure described by Elster et al.15 was used to integrate Eq. 1 with the simulated
curvature measurements. Because the analytical form of the profile is known in the simulation (Eq. 2) we can use Eq. 1 to
calculate the curvature at any given position. The reconstruction error, which is the deviation of the reconstructed profile
from the ideal profile (Eq. 2), was calculated in both the peak-to-valley and rms sense. Fig. 3 shows the means of the 20
values for the reconstruction error; the standard deviation of the reconstruction errors is indicated with error bars.

The position uncertainty is the lack of knowledge of the true measurement location of the GEMM sensor on the test
part surface. This depends both on the positioning uncertainty of the motion control system and, because pointing errors of
the sensor translate into position errors, on the angular uncertainty. For the three linear degrees of freedom of the Stewart
platform, the standard positioning uncertainty is 1 µm. The angular uncertainty of the Stewart platform is specified by
the supplier as 20 µrad. The distance between part surface and the point at which the interferometer is mounted to the
Stewart platform is about 3 cm for the 10 mm objective of the interferometer, and 10 cm for the 2 mm objective. In the
worst case, the 2 mm objective, the pointing uncertainty of the interferometer leads to an uncertainty of the measurement
location of 2 µm. When the two contributors to the position uncertainty are added in quadrature, a standard uncertainty for
the measurement position of 2.2 µm results.
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Figure 4. Reconstruction uncertainty as function of curvature sensing uncertainty.

Fig. 3 shows that the reconstruction uncertainty for the aspheric profiles is strongly dependent on the vertex radius
of the surface. This is expected because the change in curvature is lower for a surface with larger radius and a position
error will result in a smaller error in the curvature measurement. For part radii larger than about 0.2 m the reconstruction
error drops below 1 nm for the position uncertainty of the GEMM motion control system. For even larger part radii the
position error of the motion control system is of no consequence. A position uncertainty in the vicinity of 1 µm can be
accomplished with relatively modest motion control systems, such as the Stewart platform of GEMM, which do not require
laser interferometers. Measurements of surfaces with larger aspheric departure from the spherical form will have greater
sensitivity to position errors.

3.2. Effect of Uncertainty in Curvature Sensing

The uncertainty in curvature sensing has a direct effect on the uncertainty of the profile reconstruction. Two types of
curvature sensing uncertainty must be considered. The curvature sensor may be biased, which will lead to an error in the
reconstructed profile. Any bias must be removed by calibrating the sensor, which is discussed in section 3.3. Here we deal
with non-repeatable errors in the curvature sensing. We assume again that the curvature values measured by the sensor are
normally distributed about a mean. In Fig. 4 we show the reconstruction uncertainty that follows from the uncertainty in the
curvature sensing of our four surfaces with vertex radii ranging from 0.08 m to 80 m. It is clear from Fig. 4 that curvature
sensing uncertainties lower than 10−7 mm−1 must be achieved for profile reconstruction uncertainties in the vicinity of
1 nm, and this is independent of the surface radius.

The two main contributors to the uncertainty of curvature measurements are illustrated in Fig. 5. The graphs show
curvature measurements, made with GEMM, for mirrors with 0.2 m, 2 m, and 84 m radius. Because the curvature of the
reflected wavefront exceeds the dynamic range of the interferometer with the 10 mm objective, the mirrors with 2 m and
84 m radius were measured with the 10 mm diameter test beam and the 0.2 m radius mirror was measured with the 2 mm
diameter test beam of the GEMM interferometer. For all three mirrors, measurements were made at different distances of
the sensor to the mirror surface. The measurements were repeated 10 times to determine the repeatability. For the mirror
with the 84 m radius, the change in curvature of the test wave with sensor distance is so small that it cannot be detected.
For the mirrors with smaller radii, the curvature measurement depends noticeably on the distance between the sensor and
the mirror surface. It follows that this distance must be well-controlled in GEMM to obtain a sufficiently low uncertainty
for the curvature measurement. The results for all mirrors are summarized in Table 1. The value for the reproducibility uk

in the table is the average of the reproducibilities for all z-positions. uk is low enough to permit a profile reconstruction
uncertainty below 10 nm for the 10 mm diameter test beam, but considerably larger for the 2 mm test beam. The reason is
the 2 mm objective, which has many optical surfaces and produces an interferogram with more edge diffraction and stray
light effects, and these directly affect the measurement repeatability. In the case of the 2 mm test beam, the response of
curvature to sensor displacement is also non-linear at the ends of the range. In the last column of Table 1, we calculate
the uncertainty in distance between part and sensor which would result in a curvature uncertainty of 10−8 mm−1. For the
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Figure 5. Measured curvature as function of sensor distance to part surface for surface radii of 0.2 m, 2 m, and 84 m (left). The abscissæ
are the distance relative to the nominal object distance of the objective. The best fit line through the data is indicated. The same data are
shown on the right with the best fit line subtracted to clearly show residua and standard uncertainties.

Mirror Radius [m] Test beam diameter [mm] Slope dk
dz

[mm−2] uk(z) [mm−1] δz [ mm]
84 10 2.4·10−10 5.64·10−8 42
2 10 -5·10−7 2.84·10−8 2·10−2

0.2 2 -5.05·10−5 1.5·10−6 2·10−4

Table 1. Sensitivity of curvature measurement to sensor distance between test part surface and sensor for three different mirrors. uk is
the repeatability of curvature measurements, and δz the uncertainty in sensor to surface distance that is required to achieve a curvature
uncertainty of 10−8 mm−1.

mirror with the smallest radius, the permissible uncertainty for the distance between part surface and sensor is 200 nm,
which is easily realized with an interferometric distance sensing method.

3.3. Effect of Curvature Sensor Bias and Calibration

Any curvature sensor will have repeatable sensing errors such as a constant offset, or bias. We have simulated the effect
of an constant offset in the curvature sensor on the profile reconstruction uncertainty. This type of bias is expected for a
curvature sensor based on an interferometer which may have a reference surface with residual surface power. The result of
the simulation is shown in Fig. 6. The simulations emphasize that the calibration offset must be known to a high degree of
accuracy, because its effect on the peak-to-valley error in the reconstructed profile increases rapidly with part size.

In general, higher order errors may occur in addition to sensor bias. The true curvature k of a surface at the measurement
location is a function of the measured curvature value k̃:

k = f(k̃) (3)

or
k = α + β · k̃ + γ · k̃2 + . . . , (4)

when f is expressed as a power series in k̃. The purpose of the calibration of the curvature sensor is to find the constants
α, β, γ . . ., which determine the calibration. In many cases a linear model may suffice, but a non-linear model may be
needed if the sensor is used at the ends of its dynamic range. Because the profile is obtained from measured curvatures
through double integration (Eq. 1), a biased curvature sensor will yield a quadratic error in the reconstructed profile and the
peak-to-valley value of this error increases rapidly with part size. Depending on the curvature of the test part, first-order
curvature sensor errors (β 6= 1), and higher-order errors, may result in higher-order errors in the reconstructed profile.

A calibration can be made in several ways. When the linear calibration model Eq. 4 is used, at least two reference
surfaces with known curvatures within the dynamic range of the curvature sensor are needed to determine α and β. A set
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Figure 6. Profile reconstruction uncertainty as function of curvature sensor offset, or bias, for surface radii of 0.08 m, 0.8 m, 8 m, and
80 m. A constant statistical standard uncertainty in the curvature sensing of 10−8 mm−1 is assumed.

of calibrated precision balls and spherical caps are suitable calibration artifacts which could be made to realize reference
curvatures throughout the dynamic range of the sensor. An alternative method was described by Schulz et al.9 who propose
using a special diamond-turned aspheric surface, which must be characterized with an interferometer, for the calibration
of the curvature sensor. In this method, the calibration model is adjusted until the reconstructed profile matches the known
surface profile. A wide range of curvatures, which match the dynamic range of the curvature sensor, can be generated with
relative ease.

4. MEASUREMENT OF AN ELLIPTICAL MIRROR

In section 3 we concluded that GEMM in its current form should be able to measure the profile of a mirror with a large
radius using the 10 mm measurement objective of the instrument. We have put GEMM to the test and measured a profile
of a mirror that has the form of an elliptical torus and was designed as part of a Kirkpatrick-Baez imaging system for an
x-ray beam-line at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). A photo of this mirror is
shown in Fig. 7. The mirror substrate is made from silicon; it is 90 mm long and 19 mm wide. The reflective surface of
the mirror was polished into a sphere with radius of ≈84 m. A gold coating with varying thickness is deposited on the
spherical surface to give the mirror an elliptical profile in the long direction. We measured a profile at the center of the
mirror in the long direction with GEMM, with the Long Trace Profiler (LTP) at the APS, with the “eXtremely accurate
CALIBration InterferometeR” (XCALIBIR) at NIST, and the Moore M48 coordinate measuring machine also at NIST.
These instruments are described briefly in the sections below.

Proper calibration of the GEMM curvature sensor, as described in section 3.3, is difficult because suitable calibration
artifacts with large radii, and curvatures within the dynamic range of the interferometer with 10 mm aperture, were not
available. Because the range of curvatures on the elliptical x-ray mirror is small, we assume that β = 1 and neglect higher-
order terms in Eq. 4. The offset α in Eq. 4 was determined using flatwith 50 mm diameter and a flatness error of λ/40 (at
λ=633 nm). The curvature of this flat surface was measured at several random locations and the resulting curvature values
were averaged which yielded a curvature offset α of 1.05×10−6 mm−1.

An additional problem in comparing the profiles measured with different instruments arises, because each instrument
used a different part coordinate system, each shifted by an unknown distance, to describe the profile. When comparing two
profiles it is then necessary to shift one with respect to the other until the best possible agreement is achieved to compare
measurements. When comparing two non-spherical profiles, za(y) and zb(y), by shifting one with respect to the other until
the difference in a least-squares sense is as small as possible, information about the parabolic component in the profile is
potentially lost. We illustrate this fact by considering two third-order profiles

za(y) = a0 + a1y + a2y
2 + a3y

3 (5)
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Figure 7. Elliptical torus designed as part of a Kirkpatrick-Baez imaging system for an x-ray beam-line (left). The GEMM measurement
of the mirror curvature along the center line is shown on the right. The dashed line is the curvature after calibration by adding an offset
α=1.05×10−6 mm−1.

and
zb(y − δy) = b0 + b1(y − δy) + b2(y − δy)2 + b3(y − δy)3. (6)

Profile zb is shifted by an amount δy with respect to za. The difference between the profiles is

zb(y − δy) − za(y) = y3(b3 − a3) (7)

+y2(b2 − a2 − 3b3δy)

+y(b1 − a1 + 3b3δy
2 − 2b2δy)

+b0 − a0 − b1δy + b2δy
2 − b3δy

3.

When offset and slope (third and fourth term on the right-hand side of Eq. 7) are disregarded, the best match between
profiles za and zb is achieved when the shift, δy, is chosen such that

b2 − a2 = 3b3δy, (8)

and the second term on the right-hand side of Eq. 7 vanishes. All information about the difference in the second-order
terms of the profiles is then lost from the best-fit profile difference. In general, a shift in a polynomial term of a certain
degree results in errors in all polynomial terms with a lower degree. An error in the position of a third order polynomial
adds errors in the second, first, and offset terms of the difference. A circular profile is approximately equal to a 2nd order
polynomial, and thus only causes an error in offset and slope, both of which are removed. An ellipse, however, yields
approximately a parabolic profile difference which is similar to an error in the average radius of curvature. The resulting
P-V and RMS errors are proportional to the shift in position.

The lesson is that for asymmetric profiles the relative position of the profiles needs to be known, as shifts result in
errors of the lower order terms that cannot be distinguished from similar errors in the measurement instrument. In the case
of our elliptical mirror, the result is a loss of information about the average radius of curvature.

4.1. The APS Long Trace Profiler

The long trace profiler (LTP) is a non-contact slope, or angle, measuring device that is widely used for measuring the
surface figure of synchrotron beam-line mirrors. The original idea, credited to Takacs et al.,16–18 was based on the pencil
beam interferometer technique originally developed by von Bieren.19 Variations of the original design are now in use
worldwide.

The APS LPT II long trace profiler of the Advanced Photon Source (APS) (seen in Fig. 8 on the left) is the second
generation of this instrument and was commissioned in 1994. The profiler has a number of improvements, including an



Figure 8. The Advanced Photon Source long trace profiler system APS LPT II, with a 1 m long cylindrical mirror set up for measurement
(left). Optical schematics of LTP II (right). 1 = Laser fiber mount; 2 = Fixed polarizer; 3 = Rotating polarizer; 5a-b = Porro prism; 6 =
Beam splitter; 7 = Rotating half-wave plate; 8 = Polarizing beam splitter; 9a-b = Quarter-wave plates; 10 = Fourier transform lens; 11a-c
= Folding mirrors; 12 = 1024 pixel double array detector; 13 = Stationary reference mirror. Upon reflection from the Surface Under Test
(SUT), the probe beam components are directed to the Fourier transform lens (10) by the polarizing beam splitter (8). The lens focuses
the two beam components onto the linear array detector (12) and produces and intensity pattern with two peaks and a minimum between
them. The location of the minimum is proportional to the measured local slope, and this minimum translates across the detector as the
surface slope changes. In a similar fashion, the reference beam components detect the slope due to optics board pitch as it moves on the
linear air bearing system. For clarity, the full path of the reflected components of the reference beam is not shown. At the end of a scan,
the reference signal is subtracted from the SUT signal to obtain the true slope profile.

internally generated reference beam that is used to correct for tilt errors of the optical board, a dove prism (not shown in
Fig. 8) that is incorporated into this reference beam to correct for phasing problems between the mechanical and thermal
errors, and an environmental enclosure that stabilizes the temperature to within ±0.1◦C, which greatly improves instrument
repeatability. Measurements performed on a 500 mm long Zerodur substrate show a standard uncertainty below 0.3 µrad
rms, and a corresponding standard uncertainty for the height of 4.6 nm.18 The angular range of the LPT is ±5 mrad and it
can handle mirrors up to 2 m long.

The mirror in Fig. 7 was set up on the APS LPT II table with the gold coated side facing up and was left for several hours
to thermally stabilize. The mirror was first measured in one orientation. Then it was rotated by 180◦ about a vertical axis
through the center of the mirror, and measured again. Ten scans were made at each orientation and the results were averaged
to improve the signal-to-noise ratio. Additionally, at each of these orientations, the mirror was measured at three different
tilt positions. In doing this, the beam probe takes different paths through both the polarizing beam splitter and the Fourier
transform lens and averaging the resulting data reduced systematic uncertainties arising from these components. Finally,
the data measured with the rotated mirror are rotated back numerically before averaging with data from the measurements
with the unrotated mirror to arrive at the final tangential slope profile for the mirror.

4.2. Subaperture Stitching Interferometry with XCALIBIR

The mirror in Fig. 7 was measured with the “eXtremely accurate CALIBration InterferometeR” (XCALIBIR) at NIST. A
solid model of the interferometer configuration is shown in Fig. 9. The XCALIBIR interferometer is built on a granite
table to isolate it from seismic vibrations. The interferometer is housed in a class 1000 clean room that maintains the
air temperature at (20±0.02) ◦C to achieve the structural stability necessary for measurements such as radius-of-curvature
measurements. Source and imaging components of the interferometer are set up on an elevated optical breadboard to create
sufficient clearance for the testing of large parts. Light from the laser source is delivered to the interferometer with optical
fibers. An off-axis parabolic mirror collimates the central part of the light cone that is emitted by the optical fiber and
creates a collimated beam parallel to the top surface of the granite table. A beam splitter directs a fraction of the return
beam from the part under test to the imaging arm of the interferometer and the camera. A beam expander, consisting



Figure 9. XCALIBIR interferometer configured for flatness measurements. The main components of the interferometer, from left to
right, are: breadboard with source and imaging optics, diverger lens (DL), collimator lens (CL), reference flat (RF), and test mount
(TM). The mirror in Fig. 7 was mounted on the test mount and the form error was measured by combining 5 sub-aperture measurements.
A photo of the interferometer in its clean-room environment is shown on the right.

of an f/4 diverger lens and an f/4 collimator lens, creates a collimated test beam with just over 300 mm diameter. For
the measurements of the gold-coated mirror surface described here, a reference flat with a Dynaflect† coating was used,
which provided good fringe contrast for the highly reflective surface. Several measurements of the mirror with three or five
sub-apertures were made. The subaperture measurements were then “stitched” together numerically.

4.3. The Moore M48 Coordinate Measuring Machine

The NIST M48 coordinate measuring machine, shown in Fig. 10, is widely regarded as the most accurate CMM of its size in
the world. The machine structure consists of a heavy cast iron, jig-grinder base set on three vibration-damping mounts. The
X-axis table and the Y-axis cross-carriage motions are carried out by high precision lead screws immersed in oil baths and
are guided by precision double-“V” roller ways and assisted by constant force springs to reduce backlash to insignificant
levels. The Z-axis motion is achieved through a counterweighted ceramic ram hung by another precision leadscrew and
guided by air bearings and constant force springs. Laser interferometers are used on all three axes. A 200 mm thick,
kinematically mounted granite surface plate on the machine table transforms complex table bending errors into more easily
corrected rigid body motion errors. The machine is currently housed in a very stable laboratory environment. The humidity
controlled room is maintained at a temperature of 20.00 ◦C ±0.01 ◦C. The local machine temperature environment is
monitored through a series of 14 sensors placed in and around the machine for finer assessment of the thermal environment.
The current probing system uses hydraulically damped and independent deformable parallelograms for all three axes of

Figure 10. Moore M48 coordinate measuring machine in the Advanced Metrology Laboratory at NIST.
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Figure 11. Profiles at the center of the mirror in Fig. 7 in the long direction, measured with the APS LTP II profiler, the XCALIBIR inter-
ferometer at NIST, and the Moore M48 coordinate measuring machine at NIST. The graphs on the right show the GEMM, XCALIBIR,
LTP, and CMM measurements with the nominal elliptical profile of the mirror subtracted.

motion and provides repeatability at the level of 10 nm. Redundant error mapping and process control techniques have
achieved a 2D positioning accuracy over an area of 600 mm × 600 mm of better than 50 nm for all optical and touch probe
measurements.

4.4. Comparison of Profile Measurements

A comparison of the central profile of the mirror in Fig. 7, measured with the APS LTP II profiler, the XCALIBIR in-
terferometer, the M48 CMM, and GEMM is shown in Fig. 11. The graph on the left of Fig. 11 shows all four profile
measurements with offset and slope subtracted. The graph on the right of Fig. 11 shows the same data but with the ellip-
tical profile of the mirror subtracted. The curvature data on which the reconstructed GEMM profile is based are shown in
Fig. 7. The parameters of the nominal elliptical mirror profile were known and the nominal ellipse was oriented to match the
profile measured with the M48 CMM. The elliptical profile was then subtracted from the CMM data. The residual profile
is shown in Fig. 11 on the right. Using different instruments made it difficult to accurately relate the position coordinates
of the different measurements. To compare the profiles, the GEMM, LTP, and XCALIBIR profiles were shifted, until
the best possible agreement, in a least-squares sense, with the ellipse describing the nominal mirror profile was achieved.
The ellipse was then subtracted; the residuals are shown in Fig. 11. As we have described above, the result of the profile
shifts, which are necessary for the comparison, none of the profile errors shown in Fig. 11 contain information about the
quadratic term of the profile error. All four profile errors agree to within 20 nm, which is not far from the expected profile
reconstruction uncertainty for the curvature sensing uncertainty with the 10 mm GEMM objective (see Table 1 and Fig. 4).

5. CONCLUSION

Simulations of the profile reconstruction uncertainty for the Geometry Measuring Machine (GEMM) at NIST for the
dominant measurement uncertainties have resulted in a set of requirements that must be met by any instrument of the
GEMM type if it is to be used for measurements of precision optics where measurement uncertainties close to 1 nm are
needed. While the necessary positioning accuracy of the curvature sensor is not difficult to meet for a wide range of
surfaces, as long as the departure of the asphere from the best-fit sphere is modest, it is a considerably greater challenge
to achieve the required curvature sensing uncertainty below 10−8 mm−1. The compact Twyman-Green interferometer,
which is currently used as curvature sensor in GEMM, comes close to this uncertainty with only one of its measurement
objectives. Based on our experience with this interferometer, we estimate that we can achieve an uncertainty as low as
5·10−9 mm−1 with a new interferometer designed specifically for curvature sensing which is currently being constructed
at NIST. The calibration curve (Eq. 4) must be known to a high degree of accuracy, in particular the offset α, because
its effect on the peak-to-valley error in the reconstructed profile rises quadratically with profile length. Sensor stability is



equally important. For a profile of 86 mm length a stability better than 10−9 mm−1 is needed for reconstruction errors of
about 1 nm. Our profile measurement of an elliptical x-ray mirror with the GEMM prototype and with three other well-
established metrology tools show, that the third- and higher-order profile error measurements from all instruments agree
within 20 nm. Future work on GEMM will be directed towards developing a robust calibration procedure for the curvature
sensor, and a new comparison of GEMM with other metrology tools in such a way that the important parabolic terms of
profiles can be compared.
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15. C. Elster and I. Weingärtner, “High-accuracy reconstruction of a function f(x) when only d
dx

f(x) or d2

dx2 f(x) is
known at discrete measurement points,” in X-ray Mirrors, Crystals, and Multilayers II, A. K. Freund, A. T. Macrander,
T. Ishikawa, and J. L. Wood, eds., Proc. SPIE 4782, pp. 12–20, 2002.

16. P. Z. Takacs and S. N. Qian, “Design of a long trace surface profiler,” in Metrology: Figure and Finish, B. E. Truax,
ed., Proc. SPIE 749, pp. 59–64, 1987.

17. P. Z. Takacs and S. N. Qian, “Surface profile interferometer. U.S. Patent 4,884,697,” 1989.
18. P. Z. Takacs, E. L. Church, C. Bresloff, and L. Assoufid, “Long trace profiler measurement repeatability improve-

ments,” Appl. Opt. 38, pp. 5468–5479, 1999.
19. K. von Bieren, “Pencil beam interferometer for aspherical optical surfaces laser diagnostics,” Proc. SPIE 343,

pp. 101–108, 1982.


